skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Maillet, Emmanuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Micro-computed tomography (µCT) is a valuable tool for visualizing microstructures and damage in fiber-reinforced composites. However, the large sets of data generated by µCT present a barrier to extracting quantitative information. Deep learning models have shown promise for overcoming this barrier by enabling automated segmentation of features of interest from the images. However, robust validation methods have not yet been used to quantify the success rate of the models and the ability to extract accurate measurements from the segmented image. In this paper, we evaluate the detection rate for segmenting fibers in low-contrast CT images using a deep learning model with three different approaches for defining the reference (ground-truth) image. The feasibility of measuring sub-pixel feature dimensions from the µCT image, in certain cases where the µCT image intensity is dependent on the feature dimensions, is assessed and calibrated using a higher-resolution image from a polished cross-section of the test specimen in the same location as the µCT image. 
    more » « less
  2. Abstract Data‐driven science and technology have helped achieve meaningful technological advancements in areas such as materials/drug discovery and health care, but efforts to apply high‐end data science algorithms to the areas of glass and ceramics are still limited. Many glass and ceramic researchers are interested in enhancing their work by using more data and data analytics to develop better functional materials more efficiently. Simultaneously, the data science community is looking for a way to access materials data resources to test and validate their advanced computational learning algorithms. To address this issue, The American Ceramic Society (ACerS) convened a Glass and Ceramic Data Science Workshop in February 2018, sponsored by the National Institute for Standards and Technology (NIST) Advanced Manufacturing Technologies (AMTech) program. The workshop brought together a select group of leaders in the data science, informatics, and glass and ceramics communities, ACerS, and Nexight Group to identify the greatest opportunities and mechanisms for facilitating increased collaboration and coordination between these communities. This article summarizes workshop discussions about the current challenges that limit interactions and collaboration between the glass and ceramic and data science communities, opportunities for a coordinated approach that leverages existing knowledge in both communities, and a clear path toward the enhanced use of data science technologies for functional glass and ceramic research and development. 
    more » « less